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Motivation

Our goal is to infer the interaction network between a set of genes using only the
easily available gene expression data.
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The uncertainty in measuring means that we can only access a noisy version of the
interaction. Our contribution in [1] is the use of latent structure to improve graph
inference.

Gaussian Graphical Model (GGM)

Consider p ∈ N, p ≥ 2, and a random vector:

Y = (Y1, . . . , Yp)
′ ∼ Np(0,Σ)

The GGM associated with Y is a graphical representation of the conditional depen-
dence relationships between the variables.

An edge indicates a non-null partial correlation :

i ∼ j ⇔ Corr(Yi, Yj|Y−(i,j)) 6= 0 ⇔ ωij 6= 0

where Ω = Σ−1 = (ωij)i,j.

The R package SILGGM provides some test
statistics for

H0,i,j : ωi,j = 0 vs H1,i,j : ωi,j 6= 0,

We will focus on one of them introduced in [2].
Figure: Example of a GGM

Objective: Detect graph edges based on an n-sample YYY of (Y1, . . . , Yp)
′ while control-

ling the proportion of false discoveries.

Noisy Stochastic Block Model (NSBM) [3]

I The number of nodes, p ≥ 2. The number of latent groups, Q ∈ {1, . . . , p}.
I The block memberships of nodes Z = (Z1, . . . , Zp) , with Zi

iid∼ π.
I Latent graph structure : for some parameter w = (wkl)k,l ∈ SQ([0, 1]),

Ai,j | Z
cond. iid∼ Bern(wZi,Zj

).

Figure: Example of a SBM with 5 groups and 50 nodes

I Observed variables : for some parameters µ, σ ∈ SQ(R) and σ0 ∈ R,

Xi,j | Z,A ∼ (1− Ai,j)N (0, σ20) + Ai,jN (µZi,Zj
, σ2Zi,Zj

).

The unknown global model parameter is then

θ = (π,w, µ, σ).

The observation is X, while both Z and A are unobserved and latent variables
of the model.

Estimation in the NSBM: Greedy Algorithm (1/2)

The algorithm to estimate θ and Z, inspired by [4], operates as follows:

1. Start with an initial partition of nodes into Qup groups Z.

2. Evaluate, for each node, whether it’s beneficial to reassign it to a different group.
To determine this, we efficiently compute the change in the integrated
complete-data log likelihood ICLex for each potential group swap:

Estimation in the NSBM: Greedy Algorithm (2/2)

ICLex(Z,A) = log

(∫
π,w,µ,σ

p(X,A,Z, π, w, µ, σ)d(π,w, µ, σ)

)
Use of conjugate priors for π,w, µ, σ.

3. Whenever a node changes its group, both Z and the estimate of θ are updated.
During this process, some groups may become empty.

4. After steps 2 and 3 have been completed for all nodes, we check if it’s
advantageous to merge certain groups to increase the ICL.

This results in a node clustering Z, an estimate of the number of latent groups
Q, and an estimation of the model parameter θ.

Then, we apply a multiple testing procedure based on l-values to infer the graph
while controlling the False Discovery Rate (FDR).
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The simulations using synthetic data demonstrate that our method outperforms the
global procedures proposed in SILGGM and several other classic methods.

Human T cell

We applied our procedure to Sachs et al.’s data [5], that have been extensively
studied in the literature. The dataset includes p = 11 protein measurements from
902 cells.

Network given by our procedure
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(a) Established graph
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(b) Graph inferred with the full data set, level
α = 0.05.

Figure: Our inferred graph contains ten edges, nine of which are well-established in the literature.
The last edge, p38− JNK, was also detected by Sachs with low confidence and by other statisticians.
This graph serves as a benchmark for full dataset inference.

To assess our method’s ability to recover these edges with a smaller dataset, we
randomly sample subsets.

n=10 n=20
Edge LiuL LiuL NSBM LiuL NIG LiuL LiuL NSBM LiuL NIG

Raf - Mek1/2 183 191 192 200 200 200
PLCg - PIP2 15 32 30 30 44 43
PLCg - PIP3 70 95 93 107 134 133
PIP2 - PIP3 119 140 147 168 176 176
Erk1/2 - Akt 178 180 187 197 198 198
Akt - PKA 59 85 88 118 136 139

... ... ... ... ... ... ...

Table: Over 200 simulations, we counted how often the 10 edges were detected when the
procedures were applied to randomly chosen subsets of either n = 10 or n = 20 observations.

Our procedure detects all ten edges more frequently. This confirms the efficacy of
our procedure in improving GGM inference.
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