Improving Gaussian Graphical Model inference by
learning the graph structure
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Our goal is to infer the interaction network between a set of genes using only the
easily available gene expression data.
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The uncertainty in measuring means that we can only access a noisy version of the

interaction. Our contribution in [1] is the use of latent structure to improve graph
inference.

Gaussian Graphical Model (GGM)

Consider p € N, p > 2, and a random vector:

Y:(Ylv"'vyp)/f\"/\/;?mvz)

The GGM associated with Y is a graphical representation of the conditional depen-
dence relationships between the variables.

An edge indicates a non-null partial correlation :
i~j & Corr(Y,Y;|Y_ ;) #0 & wy #0 O
where ) = X1 = <wij>i,j.

The R package SILGGM provides some test @ ®
statistics for
® e

Figure: Example of a GGM

HO,Z',j P Wi = 0 vs Hl,z’,j P Wi j # 0,
We will focus on one of them introduced in [2].

Objective: Detect graph edges based on an n-sample Y of (Y7, ...,Y,)" while control-
ling the proportion of false discoveries.

Noisy Stochastic Block Model (NSBM) [3]

» The number of nodes, p > 2. The number of latent groups, @ € {1,...,p}.
» The block memberships of nodes Z = (7, ..., Z,) , with Z; uor.

» Latent graph structure : for some parameter w = (wy)r; € So([0, 1]),

d. iid
Aij| Z TR Bern(wg,z,).
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Figure: Example of a SBM with 5 groups and 50 nodes
» Observed variables : for some parameters u, o € Sp(R) and o € R,
Xij| Z, A~ (1= Ai)N(0,00) + Ay jN (12,2, 07, 7,)-
The unknown global model parameter is then
0= (m,w,u,o).

The observation is X, while both 7 and A are unobserved and latent variables
of the model.

Estimation in the NSBM: Greedy Algorithm (1/2)

The algorithm to estimate 6§ and Z, inspired by [4], operates as follows:

1. Start with an initial partition of nodes into @, groups Z.

2. Evaluate, for each node, whether it's beneficial to reassign it to a different group.
To determine this, we efficiently compute the change in the integrated
complete-data log likelihood /C' L., for each potential group swap:
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Estimation in the NSBM: Greedy Algorithm (2/2)

ICL..(Z,A) =log (/ p(X, A, Z m,w, u,o)d(m,w, i, 0))

Use of conjugate priors for =, w, u, o.

W, 1,0

3. Whenever a node changes its group, both Z and the estimate of 6 are updated.
During this process, some groups may become empty.

4. After steps 2 and 3 have been completed for all nodes, we check if it’s
advantageous to merge certain groups to increase the ICL.

This results in a node clustering 7, an estimate of the number of latent groups
(), and an estimation of the model parameter 6.

Then, we apply a multiple testing procedure based on /-values to infer the graph
while controlling the False Discovery Rate (FDR).
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The simulations using synthetic data demonstrate that our method outperforms the
global procedures proposed in STL.GGM and several other classic methods.

Human T cell

We applied our procedure to Sachs et al’s data [5], that have been extensively
studied in the literature. The dataset includes p = 11 protein measurements from

Raf Mek1/2 Raf Mek1/2

p38 p38
PLC

9 PKC PKA Erki/2 PLCg PKC PKA Erk1/2
PIP2 INK
PIP2 INK
PIP3 Akt
PIP3 Akt

(a) Established graph (b) Graph inferred with the full data set, level

a = 0.05.

Figure: Our inferred graph contains ten edges, nine of which are well-established in the literature.
The last edge, p38 — JN K, was also detected by Sachs with low confidence and by other statisticians.
This graph serves as a benchmark for full dataset inference.

To assess our method’s ability to recover these edges with a smaller dataset, we
randomly sample subsets.

n=10 n=20
Edge LiuL | LiuL NSBM | LiuL NIG | LiuL | LiuL NSBM | LiuL NIG
Raf - Mek1/2 | 183 191 192 200 200 200
PLCg - PIP2 | 15 32 30 30 44 43
PLCg - PIP3| 70 95 93 107 134 133
PIP2 - PIP3 | 119 140 147 168 176 176
Erk1/2 - Akt | 178 180 187 197 198 198
Akt - PKA 59 85 88 118 136 139

Table: Over 200 simulations, we counted how often the 10 edges were detected when the
procedures were applied to randomly chosen subsets of either n = 10 or n = 20 observations.

Our procedure detects all ten edges more frequently. This confirms the efficacy of
our procedure in improving GGM inference.
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